网站首页 语言 会计 电脑 医学 资格证 职场 文艺体育 范文
当前位置:书香门第 > 范文 > 校园

高三物理知识点(15篇)

栏目: 校园 / 发布于: / 人气:1.61W
高三物理知识点1

1)平抛运动

高三物理知识点(15篇)

1.水平方向速度:Vx=Vo 2.竖直方向速度:Vy=gt

3.水平方向位移:x=Vot 4.竖直方向位移:y=gt2/2

5.运动时间t=(2y/g)1/2(通常又表示为(2h/g)1/2)

6.合速度Vt=(Vx2+Vy2)1/2=[Vo2+(gt)2]1/2

合速度方向与水平夹角β:tgβ=Vy/Vx=gt/V0

7.合位移:s=(x2+y2)1/2,

位移方向与水平夹角α:tgα=y/x=gt/2Vo

8.水平方向加速度:ax=0;竖直方向加速度:ay=g

注:

(1)平抛运动是匀变速曲线运动,加速度为g,通常可看作是水平方向的匀速直线运与竖直方向的自由落体运动的合成;

(2)运动时间由下落高度h(y)决定与水平抛出速度无关;

(3)θ与β的关系为tgβ=2tgα;

(4)在平抛运动中时间t是解题关键;(5)做曲线运动的物体必有加速度,当速度方向与所受合力(加速度)方向不在同一直线上时,物体做曲线运动。

2)匀速圆周运动

1.线速度V=s/t=2πr/T 2.角速度ω=/t=2π/T=2πf

3.向心加速度a=V2/r=ω2r=(2π/T)2r 4.向心力F心=mV2/r=mω2r=mr(2π/T)2=mωv=F合

5.周期与频率:T=1/f 6.角速度与线速度的关系:V=ωr

7.角速度与转速的关系ω=2πn(此处频率与转速意义相同)

8.主要物理量及单位:弧长(s):米(m);角度():弧度(rad);频率(f):赫(Hz);周期(T):秒(s);转速(n):r/s;半径(r):米(m);线速度(V):m/s;角速度(ω):rad/s;向心加速度:m/s2。

注:

(1)向心力可以由某个具体力提供,也可以由合力提供,还可以由分力提供,方向始终与速度方向垂直,指向圆心;

(2)做匀速圆周运动的物体,其向心力等于合力,并且向心力只改变速度的方向,不改变速度的大小,因此物体的动能保持不变,向心力不做功,但动量不断改变。

3)万有引力

1.开普勒第三定律:T2/R3=K(=4π2/GM){R:轨道半径,T:周期,K:常量(与行星质量无关,取决于中心天体的质量)}

2.万有引力定律:F=Gm1m2/r2 (G=6.67×10-11N?m2/kg2,方向在它们的连线上)

3.天体上的重力和重力加速度:GMm/R2=mg;g=GM/R2 {R:天体半径(m),M:天体质量(kg)}

4.卫星绕行速度、角速度、周期:V=(GM/r)1/2;ω=(GM/r3)1/2;T=2π(r3/GM)1/2{M:中心天体质量}

5.第一(二、三)宇宙速度V1=(g地r地)1/2=(GM/r地)1/2=7.9km/s;V2=11.2km/s;V3=16.7km/s

6.地球同步卫星GMm/(r地+h)2=m4π2(r地+h)/T2{h≈36000km,h:距地球表面的高度,r地:地球的半径}

注:

(1)天体运动所需的向心力由万有引力提供,F向=F万;

(2)应用万有引力定律可估算天体的质量密度等;

(3)地球同步卫星只能运行于赤道上空,运行周期和地球自转周期相同;

(4)卫星轨道半径变小时,势能变小、动能变大、速度变大、周期变小(一同三反);

(5)地球卫星的最大环绕速度和最小发射速度均为7.9km/s。

高三物理知识点2

一、质点的运动(1)------直线运动

1)匀变速直线运动

1.平均速度V平=S/t(定义式)2.有用推论Vt2–Vo2=2as

3.中间时刻速度Vt/2=V平=(Vt+Vo)/24.末速度Vt=Vo+at

5.中间位置速度Vs/2=[(Vo2+Vt2)/2]1/26.位移S=V平t=Vot+at2/2=Vt/2t

7.加速度a=(Vt-Vo)/t以Vo为正方向,a与Vo同向(加速)a>0;反向则a<0

8.实验用推论ΔS=aT2ΔS为相邻连续相等时间(T)内位移之差

9.主要物理量及单位:初速(Vo):m/s

加速度(a):m/s2末速度(Vt):m/s

时间(t):秒(s)位移(S):米(m)路程:米速度单位换算:1m/s=3.6Km/h

注:(1)平均速度是矢量。(2)物体速度大,加速度不一定大。(3)a=(Vt-Vo)/t只是量度式,不是决定式。(4)其它相关内容:质点/位移和路程/s--t图/v--t图/速度与速率/

2)自由落体

1.初速度Vo=0

2.末速度Vt=gt

3.下落高度h=gt2/2(从Vo位置向下计算)4.推论Vt2=2gh

注:(1)自由落体运动是初速度为零的匀加速直线运动,遵循匀变速度直线运动规律。

(2)a=g=9.8m/s2≈10m/s2重力加速度在赤道附近较小,在高山处比平地小,方向竖直向下。

3)竖直上抛

1.位移S=Vot-gt2/22.末速度Vt=Vo-gt(g=9.8≈10m/s2)

5.往返时间t=2Vo/g(从抛出落回原位置的时间)

注:(1)全过程处理:是匀减速直线运动,以向上为正方向,加速度取负值。(2)分段处理:向上为匀减速运动,向下为自由落体运动,具有对称性。(3)上升与下落过程具有对称性,如在同点速度等值反向等。

4)曲线运动基本规律

①条件:v0与F合不共线

②速度方向:切线方向

③弯曲方向:总是从v0的方向转向F合的方向

高三物理知识点3

力和物体的平衡

1.力是物体对物体的作用,是物体发生形变和改变物体的运动状态(即产生加速度)的原因. 力是矢量。

2.重力(1)重力是由于地球对物体的吸引而产生的.

[注意]重力是由于地球的吸引而产生,但不能说重力就是地球的吸引力,重力是万有引力的一个分力.

但在地球表面附近,可以认为重力近似等于万有引力

(2)重力的大小:地球表面G=mg,离地面高h处G/=mg/,其中g/=[R/(R+h)]2g

(3)重力的方向:竖直向下(不一定指向地心)。

(4)重心:物体的各部分所受重力合力的作用点,物体的重心不一定在物体上.

3.弹力

(1)产生原因:由于发生弹性形变的物体有恢复形变的趋势而产生的.

(2)产生条件:①直接接触;②有弹性形变.

(3)弹力的方向:与物体形变的方向相反,弹力的受力物体是引起形变的物体,施力物体是发生形变的物体.在点面接触的情况下 高中英语,垂直于面;

在两个曲面接触(相当于点接触)的情况下,垂直于过接触点的公切面.

①绳的拉力方向总是沿着绳且指向绳收缩的方向,且一根轻绳上的张力大小处处相等.

②轻杆既可产生压力,又可产生拉力,且方向不一定沿杆.

(4)弹力的大小:一般情况下应根据物体的运动状态,利用平衡条件或牛顿定律来求解.弹簧弹力可由胡克定律来求解.

胡克定律:在弹性限度内,弹簧弹力的大小和弹簧的形变量成正比,即F=kx.k为弹簧的劲度系数,它只与弹簧本身因素有关,单位是N/m.

 4.摩擦力

(1)产生的条件:①相互接触的物体间存在压力;③接触面不光滑;③接触的物体之间有相对运动(滑动摩擦力)或相对运动的趋势(静摩擦力),这三点缺一不可.

(2)摩擦力的方向:沿接触面切线方向,与物体相对运动或相对运动趋势的方向相反,与物体运动的方向可以相同也可以相反.

(3)判断静摩擦力方向的方法:

①假设法:首先假设两物体接触面光滑,这时若两物体不发生相对运动,则说明它们原来没有相对运动趋势,也没有静摩擦力;若两物体发生相对运动,则说明它们原来有相对运动趋势,并且原来相对运动趋势的方向跟假设接触面光滑时相对运动的方向相同.然后根据静摩擦力的方向跟物体相对运动趋势的方向相反确定静摩擦力方向.

②平衡法:根据二力平衡条件可以判断静摩擦力的方向.

(4)大小:先判明是何种摩擦力,然后再根据各自的规律去分析求解.

①滑动摩擦力大小:利用公式f=μF N 进行计算,其中FN 是物体的正压力,不一定等于物体的重力,甚至可能和重力无关.或者根据物体的运动状态,利用平衡条件或牛顿定律来求解.

高三物理知识点4

1、物质是由分子组成的。分子若看成球型,其直径以10—10m来度量。

2、一切物体的分子都在不停地做无规则的运动。

①扩散:不同物质在相互接触时,彼此进入对方的现象。

②扩散现象说明:

A分子之间有间隙。

B分子在做不停的无规则的运动。

③课本中的装置下面放二氧化氮这样做的目的是:防止二氧化氮扩散被误认为是重力作用的结果。实验现象:两瓶气体混合在一起颜色变得均匀,结论:气体分子在不停地运动。

④固、液、气都可扩散,扩散速度与温度有关。

⑤分子运动与物体运动要区分开:扩散、蒸发等是分子运动的结果,而飞扬的灰尘,液、气体对流是物体运动的结果。

3、分子间有相互作用的引力和斥力。

①当分子间的距离d=分子间平衡距离r,引力=斥力。

②d

③d>r时,引力>斥力,引力起主要作用。固体很难被拉断,钢笔写字,胶水粘东西都是因为分子之间引力起主要作用。

④当d>10r时,分子之间作用力十分微弱,可忽略不计。

破镜不能重圆的原因是:镜块间的距离远大于分子之间的作用力的作用范围,镜子不能因分子间作用力而结合在一起。

高三物理知识点5

1.电路的组成:电源、开关、用电器、导线。

2.电路的三种状态:通路、断路、短路。

3.电流有分支的是并联,电流只有一条通路的是串联。

4.在家庭电路中,用电器都是并联的。

5.电荷的定向移动形成电流(金属导体里自由电子定向移动的方向与电流方向相反)。

6.电流表不能直接与电源相连,电压表在不超出其测量范围的情况下可以。

7.电压是形成电流的原因。

8.安全电压应低于24V。

9.金属导体的电阻随温度的升高而增大。

10.影响电阻大小的因素有:材料、长度、横截面积、温度(温度有时不考虑)。

11.滑动变阻器和电阻箱都是靠改变接入电路中电阻丝的长度来改变电阻的。

12.利用欧姆定律公式要注意I、U、R三个量是对同一段导体而言的。

13.伏安法测电阻原理:R=伏安法测电功率原理:P=UI

14.串联电路中:电压、电功和电功率与电阻成正比

15.并联电路中:电流、电功和电功率与电阻成反比

16."220V、100W"的灯泡比"220V、40W"的灯泡电阻小,灯丝粗。

高三物理知识点6

1、原子结构

1.卢瑟福的核式结构模型(行星式模型)

α粒子散射实验:是用α粒子轰击金箔,结果是绝大多数α粒子穿过金箔后基本上仍沿原来的方向前进,但是有少数α粒子发生了较大的偏转。这说明原子的正电荷和质量一定集中在一个很小的核上。

卢瑟福由α粒子散射实验提出:在原子的中心有一个很小的核,叫原子核,原子的全部正电荷和几乎全部质量都集中在原子核里,带负电的电子在核外空间运动。

由α粒子散射实验的实验数据还可以估算出原子核大小的数量级是10-15。

2.玻尔模型(引入量子理论,量子化就是不连续性,整数n叫量子数。)

⑴玻尔的三条假设(量子化)

①轨道量子化rn=n2r1r1=0.53×10-10

②能量量子化:E1=-13.6eV

③原子在两个能级间跃迁时辐射或吸收光子的能量hν=E-En

⑵从高能级向低能级跃迁时放出光子;从低能级向高能级跃迁时可能是吸收光子,也可能是由于碰撞(用加热的方法,使分子热运动加剧,分子间的`相互碰撞可以传递能量)。原子从低能级向高能级跃迁时只能吸收一定频率的光子;而从某一能级到被电离可以吸收能量大于或等于电离能的任何频率的光子。(如在基态,可以吸收E≥13.6eV的任何光子,所吸收的能量除用于电离外,都转化为电离出去的电子的动能)。

2、天然放射现象

⑴.天然放射现象----天然放射现象的发现,使人们认识到原子核也有复杂结构。

⑵.各种放射线的性质比较

种类本质质量(u)电荷(e)速度(c)电离性贯穿性

α射线

氦核4+20.1最强最弱,纸能挡住

β射线

电子1/1840-10.99较强较强,穿几铝板

γ射线光子001最弱最强,穿几c铅版

3、核反应

①核反应类型

⑴衰变:α衰变:(核内)

β衰变:(核内)

γ衰变:原子核处于较高能级,辐射光子后跃迁到低能级。

⑵人工转变:(发现质子的核反应)

(发现中子的核反应)

⑶重核的裂变:在一定条件下(超过临界体积),裂变反应会连续不断地进行下去,这就是链式反应。

⑷轻核的聚变:(需要几百万度高温,所以又叫热核反应)

所有核反应的反应前后都遵守:质量数守恒、电荷数守恒。(注意:质量并不守恒。)

②.半衰期

放射性元素的原子核有半数发生衰变所需的时间叫半衰期。(对大量原子核的统计规律)计算式为:N表示核的个数,此式也可以演变成或,式中表示放射性物质的质量,n表示单位时间内放出的射线粒子数。以上各式左边的量都表示时间t后的剩余量。

半衰期由核内部本身的因素决定,跟原子所处的物理、化学状态无关。

③.放射性同位素的应用

⑴利用其射线:α射线电离性强,用于使空气电离,将静电泄出,从而消除有害静电。γ射线贯穿性强,可用于金属探伤,也可用于治疗恶性肿瘤。各种射线均可使DNA发生突变,可用于生物工程,基因工程。

⑵作为示踪原子。用于研究农作物化肥需求情况,诊断甲状腺疾病的类型,研究生物大分子结构及其功能。

⑶进行考古研究。利用放射性同位素碳14,判定出土木质文物的产生年代。

一般都使用人工制造的放射性同位素(种类齐全,各种元素都有人工制造的放射性同位。半衰期短,废料容易处理。可制成各种形状,强度容易控制)。

4、核能

(1).核能------核反应中放出的能叫核能。

(2).质量亏损---核子结合生成原子核,所生成的原子核的质量比生成它的核子的总质量要小些,这种现象叫做质量亏损。

(3).质能方程-----爱因斯坦的相对论指出:物体的能量和质量之间存在着密切的联系,它们的关系是:

E=c2,这就是爱因斯坦的质能方程。

质能方程的另一个表达形式是:ΔE=Δc2。以上两式中的各个物理量都必须采用国际单位。在非国际单位里,可以用1u=931.5MeV。它表示1原子质量单位的质量跟931.5MeV的能量相对应。

在有关核能的计算中,一定要根据已知和题解的要求明确所使用的单位制。

(4).释放核能的途径

凡是释放核能的核反应都有质量亏损。核子组成不同的原子核时,平均每个核子的质量亏损是不同的,所以各种原子核中核子的平均质量不同。核子平均质量小的,每个核子平均放的能多。铁原子核中核子的平均质量最小,所以铁原子核最稳定。凡是由平均质量大的核,生成平均质量小的核的核反应都是释放核能的。

高三物理知识点7

一、牛顿第一定律(惯性定律):一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种做状态为止。

1、只有当物体所受合外力为零时,物体才能处于静止或匀速直线运动状态;

2、力是该变物体速度的原因;

3、力是改变物体运动状态的原因(物体的速度不变,其运动状态就不变)

4、力是产生加速度的原因;

二、惯性:物体保持匀速直线运动或静止状态的性质叫惯性。

1、一切物体都有惯性;

2、惯性的大小由物体的质量决定;

3、惯性是描述物体运动状态改变难易的物理量;

三、牛顿第二定律:物体的加速度跟所受的合外力成正比,跟物体的质量成反比,加速度的方向跟物体所受合外力的方向相同。

1、数学表达式:a=F合/m;

2、加速度随力的产生而产生、变化而变化、消失而消失;

3、当物体所受力的方向和运动方向一致时,物体加速;当物体所受力的方向和运动方向相反时,物体减速。

4、力的单位牛顿的定义:使质量为1kg的物体产生1m/s2加速度的力,叫1N;

四、牛顿第三定律:物体间的作用力和反作用总是等大、反向、作用在同一条直线上的;

1、作用力和反作用力同时产生、同时变化、同时消失;

2、作用力和反作用力与平衡力的根本区别是作用力和反作用力作用在两个相互作用的物体上,平衡力作用在同一物体上。

高三物理知识点8

1)常见的力

1.重力G=mg(方向竖直向下,g=9.8m/s2≈10m/s2,作用点在重心,适用于地球表面附近)

2.胡克定律F=kx{方向沿恢复形变方向,k:劲度系数(N/m),x:形变量(m)}

3.滑动摩擦力F=μFN{与物体相对运动方向相反,μ:摩擦因数,FN:正压力(N)}

4.静摩擦力0≤f静≤fm(与物体相对运动趋势方向相反,fm为静摩擦力)

5.万有引力F=Gm1m2/r2(G=6.67×10-11N?m2/kg2,方向在它们的连线上)

6.静电力F=kQ1Q2/r2(k=9.0×109N?m2/C2,方向在它们的连线上)

7.电场力F=Eq(E:场强N/C,q:电量C,正电荷受的电场力与场强方向相同)

8.安培力F=BILsinθ(θ为B与L的夹角,当L⊥B时:F=BIL,B//L时:F=0)

9.洛仑兹力f=qVBsinθ(θ为B与V的夹角,当V⊥B时:f=qVB,V//B时:f=0)

注:

(1)劲度系数k由弹簧自身决定;

(2)摩擦因数μ与压力大小及接触面积大小无关,由接触面材料特性与表面状况等决定;

(3)fm略大于μFN,一般视为fm≈μFN;

(4)其它相关内容:静摩擦力(大小、方向)〔见第一册P8〕;

(5)物理量符号及单位B:磁感强度(T),L:有效长度(m),I:电流强度(A),V:带电粒子速度(m/s),q:带电粒子(带电体)电量(C);

(6)安培力与洛仑兹力方向均用左手定则判定。

2)力的合成与分解

1.同一直线上力的合成同向:F=F1+F2,反向:F=F1-F2(F1>F2)

2.互成角度力的合成:

F=(F12+F22+2F1F2cosα)1/2(余弦定理)F1⊥F2时:F=(F12+F22)1/2

3.合力大小范围:|F1-F2|≤F≤|F1+F2|

4.力的正交分解:Fx=Fcosβ,Fy=Fsinβ(β为合力与x轴之间的夹角tgβ=Fy/Fx)

注:

(1)力(矢量)的合成与分解遵循平行四边形定则;

(2)合力与分力的关系是等效替代关系,可用合力替代分力的共同作用,反之也成立;

(3)除公式法外,也可用作图法求解,此时要选择标度,严格作图;

(4)F1与F2的值一定时,F1与F2的夹角(α角)越大,合力越小;

(5)同一直线上力的合成,可沿直线取正方向,用正负号表示力的方向,化简为代数运算。

高三物理知识点9

1.电压瞬时值e=Esinωt 电流瞬时值i=Isinωt;(ω=2πf)

2.电动势峰值E=nBSω=2BLv 电流峰值(纯电阻电路中)I=E/R总

3.正(余)弦式交变电流有效值:E=E/(2)1/2;U=U/(2)1/2 ;I=I/(2)1/2

4.理想变压器原副线圈中的电压与电流及功率关系

U1/U2=n1/n2; I1/I2=n2/n2; P入=P出

5.在远距离输电中,采用高压输送电能可以减少电能在输电线上的损失:P损′=(P/U)2R;(P损′:输电线上损失的功率,P:输送电能的总功率,U:输送电压,R:输电线电阻)〔见第二册P198〕;

6.公式1、2、3、4中物理量及单位:ω:角频率(rad/s);t:时间(s);n:线圈匝数;B:磁感强度(T);

S:线圈的面积(2);U:(输出)电压(V);I:电流强度(A);P:功率(W)。

注:

(1)交变电流的变化频率与发电机中线圈的转动的频率相同即:ω电=ω线,f电=f线;

(2)发电机中,线圈在中性面位置磁通量最大,感应电动势为零,过中性面电流方向就改变;

(3)有效值是根据电流热效应定义的,没有特别说明的交流数值都指有效值;

(4)理想变压器的匝数比一定时,输出电压由输入电压决定,输入电流由输出电流决定,输入功率等于输出功率,当负载的消耗的功率增大时输入功率也增大,即P出决定P入;

(5)其它相关内容:正弦交流电图象〔见第二册P190〕/电阻、电感和电容对交变电流的作用〔见第二册P193〕。

高三物理知识点10

1.功

①重力势能是地球和物体组成的系统共有的,而不是物体单独具有的。

②重力势能的大小和零势能面的选取有关。

③重力势能是标量,但有"+"、"-"之分。

(2)重力做功的特点:重力做功只决定于初、末位置间的高度差,与物体的运动路径无关。WG=gh。

(3)做功跟重力势能改变的关系:重力做功等于重力势能增量的负值。即

6.弹性势能:物体由于发生弹性形变而具有的能量。

7.机械能守恒定律

(1)动能和势能(重力势能、弹性势能)统称为机械能,E=E+Ep。

(2)机械能守恒定律的内容:在只有重力(和弹簧弹力)做功的情形下,物体动能和重力势能(及弹性势能)发生相互转化,但机械能的总量保持不变。

(3)机械能守恒定律的表达式

(4)系统机械能守恒的三种表示方式:

①系统初态的总机械能E1等于末态的总机械能E2,即E1=E2

②系统减少的总重力势能ΔEP减等于系统增加的总动能ΔE增,即ΔEP减=ΔE增

③若系统只有A、B两物体,则A物体减少的机械能等于B物体增加的机械能,即ΔEA减=ΔEB增

[注意]解题时究竟选取哪一种表达形式,应根据题意灵活选取;需注意的是:选用①式时,必须规定零势能参考面,而选用②式和③式时,可以不规定零势能参考面,但必须分清能量的减少量和增加量。

(5)判断机械能是否守恒的方法

①用做功来判断:分析物体或物体受力情况(包括内力和外力),明确各力做功的情况,若对物体或系统只有重力或弹簧弹力做功,没有其他力做功或其他力做功的代数和为零,则机械能守恒。

②用能量转化来判定:若物体系中只有动能和势能的相互转化而无机械能与其他形式的能的转化,则物体系统机械能守恒。

③对一些绳子突然绷紧,物体间非弹性碰撞等问题,除非题目特别说明,机械能必定不守恒,完全非弹性碰撞过程机械能也不守恒。

8.功能关系

(1)当只有重力(或弹簧弹力)做功时,物体的机械能守恒。

(2)重力对物体做的功等于物体重力势能的减少:WG=Ep1-Ep2。

(3)合外力对物体所做的功等于物体动能的变化:W合=E2-E1(动能定理)

(4)除了重力(或弹簧弹力)之外的力对物体所做的功等于物体机械能的变化:WF=E2-E1

9.能量和动量的综合运用

动量与能量的综合问题,是高中力学最重要的综合问题,也是难度较大的问题。分析这类问题时,应首先建立清晰的物理图景,抽象出物理模型,选择物理规律,建立方程进行求解。这一部分的主要模型是碰撞。而碰撞过程,一般都遵从动量守恒定律,但机械能不一定守恒,对弹性碰撞就守恒,非弹性碰撞就不守恒,总的能量是守恒的,对于碰撞过程的能量要分析物体间的转移和转换。从而建立碰撞过程的能量关系方程。根据动量守恒定律和能量关系分别建立方程,两者联立进行求解,是这一部分常用的解决物理问题的方法。

高三物理知识点11

1、分子的大小

自然界中所有物质都是由大量的分子组成的。此处所提出的“分子”是个广义概念,指组成物质的原子、离子或分子。

(1)分子模型

首先,可以把单个分子看做一个立方体,也可以看做是一个小球。通常情况下把分子看做小球,是对分子的简化模型。实际上,分子有着复杂的内部结构,并不真的都是小球。

其次,不同的物质形态其分子的排布也有区别,任何物质的分子间都有空隙。对固体和液体而言,分子间空隙比较小,我们通常认为分子是一个挨着一个排列的,而忽略其空隙的大小。

(2)用油膜法估测分子的大小

估测分子的大小通常采用油膜法。具体把一滴油膜滴到水面上,油酸在水面上散开形成单分子油膜,如果把分子看成球形,单分子油膜的厚度就可认为等于油膜分子的直径。最后根据1滴油酸的体积V和油膜面积S就可以算出油膜的厚度(),即油酸分子的尺寸。其线度的数量级为。用油膜法测定分子的直径时,实际是一种理想化处理过程,我们做了如下理想化处理:

①把滴在水面上的油酸层当作单分子油膜层.

②把分子看成球形.

我们可以用不同的方法估测分子的大小。用不同的方法测出的分子大小并不完全相同,但是数量级是一致的。除了一些高分子有机物之外,一般分子直径的数量级约为。

2、阿伏加德罗常数

(1)阿伏加德罗常数.

即1 l的任何物质都含有相同的粒子数,这个数就叫阿伏加德罗常数.

(2)阿伏加德罗常数的取值:

(3)阿伏加德罗常数的意义:

阿伏加德罗常数用表示,它是微观世界的—个重要常数,是联系微观物理量和宏观物理量的桥梁,它的意义:

①已知固体和液体(气体不适用)的摩尔体积vl和一个分子的体积v,则;反之亦可估算分子的大小。

②已知物质(所有物质,无论液体、固体还是气体均适用)的摩尔质量M和一个分子的质量,求;反之亦可估算分子的质量。

③已知固体和液体(气体不适用)的体积V和摩尔体积vl,则物质的分子数.其中是物质的密度,M是物质的质量。

④已知物质(所有物质,无论液体、固体还是气体均适用)的质量和摩尔质量,则物质的分子数.

高中是人生中的关键阶段,大家一定要好好把握高中,编辑老师为大家整理的高三物理上册第七章知识点,希望大家喜欢。

高三物理知识点12

1.超重现象

定义:物体对支持物的压力大于物体所受重力的情况叫超重现象。

产生原因:物体具有竖直向上的加速度。

2.失重现象

定义:物体对支持物的压力(或对悬挂物的拉力)小于物体所受重力的情况叫失重现象。

产生原因:物体具有竖直向下的加速度。

3.完全失重现象

定义:物体对支持物的压力等于零的情况即与支持物或悬挂物虽然接触但无相互作用。

产生原因:物体竖直向下的加速度就是重力加速度,即只受重力作用,不会再与支持物或悬挂物发生作用。是否发生完全失重现象与运动方向无关,只要物体竖直向下的加速度等于重力加速度即可。

【超重和失重就是物体的重量增加和减小吗?】

答:不是。

只有在平衡状态下,才能用弹簧秤测出物体的重力,因为此时弹簧秤对物体的支持力(或拉力)的大小恰等于它的重力。假若系统在竖直方向有加速度,那么弹簧秤的示数就不等于物体的重力了,大于mg时叫“超重”小于mg叫“失重”(等于零时叫“完全失重”)。

注意:物体处于“超重”或“失重”状态,地球作用于物体的重力始终存在,大小也无变化。发生“超重”或“失重”现象与物体的速度V方向无关,只取决于物体加速度的方向。在“完全失重”(a=g)的状态,平常一切由重力产生的物理现象都会完全消失,比如单摆停摆、浸在水中的物体不受浮力等。

另外,“超重”或“失重”状态还可以从牛顿第二定律的独立性(是指作用于物体上的每一个力各自产生对应的加速度)上来解释。上述状态中物体的重力始终存在,大小也无变化,自然其产生的加速度(通常称为重力加速度g)是不发生变化的,自然重力不变。

高三物理知识点13

高三物理《光的反射和折射》知识点总结

1.光的直线传播

(1)光在同一种均匀介质中沿直线传播.小孔成像,影的形成,日食和月食都是光直线传播的例证。

(2)影是光被不透光的物体挡住所形成的暗区.影可分为本影和半影,在本影区域内完全看不到光源发出的光,在半影区域内只能看到光源的某部分发出的光.点光源只形成本影,非点光源一般会形成本影和半影.本影区域的大小与光源的面积有关,发光面越大,本影区越小。

(3)日食和月食:

人位于月球的本影内能看到日全食,位于月球的半影内能看到日偏食,位于月球本影的延伸区域(即"伪本影")能看到日环食;当月球全部进入地球的本影区域时,人可看到月全食.月球部分进入地球的本影区域时,看到的是月偏食。

2.光的反射现象---:光线入射到两种介质的界面上时,其中一部分光线在原介质中改变传播方向的现象。

(1)光的反射定律:

①反射光线、入射光线和法线在同一平面内,反射光线和入射光线分居于法线两侧。②反射角等于入射角。

(2)反射定律表明,对于每一条入射光线,反射光线是唯一的,在反射现象中光路是可逆的。

3.平面镜成像

(1)像的特点---------平面镜成的像是正立等大的虚像,像与物关于镜面为对称。

(2)光路图作法-----------根据平面镜成像的特点,在作光路图时,可以先画像,后补光路图。

(3)充分利用光路可逆-------在平面镜的计算和作图中要充分利用光路可逆。(眼睛在某点A通过平面镜所能看到的范围和在A点放一个点光源,该电光源发出的光经平面镜反射后照亮的范围是完全相同的。)

4.光的折射--光由一种介质射入另一种介质时,在两种介质的界面上将发生光的传播方向改变的现象叫光的折射。

(2)光的折射定律---①折射光线,入射光线和法线在同一平面内,折射光线和入射光线分居于法线两侧。

②入射角的正弦跟折射角的正弦成正比,即sini/sinr=常数。(3)在折射现象中,光路是可逆的。

5.折射率---光从真空射入某种介质时,入射角的正弦与折射角的正弦之比,叫做这种介质的折射率,折射率用n表示,即n=sini/sinr。

某种介质的折射率,等于光在真空中的传播速度c跟光在这种介质中的传播速度v之比,即n=c/v,因c>v,所以任何介质的折射率n都大于1.两种介质相比较,n较大的介质称为光密介质,n较小的介质称为光疏介质。

6.全反射和临界角

(1)全反射:光从光密介质射入光疏介质,或光从介质射入真空(或空气)时,当入射角增大到某一角度,使折射角达到90°时,折射光线完全消失,只剩下反射光线,这种现象叫做全反射。

(2)全反射的条件

①光从光密介质射入光疏介质,或光从介质射入真空(或空气)。②入射角大于或等于临界角

(3)临界角:折射角等于90°时的入射角叫临界角,用C表示sinC=1/n

7.光的色散:白光通过三棱镜后,出射光束变为红、橙、黄、绿、蓝、靛、紫七种色光的光束,这种现象叫做光的色散。

(1)同一种介质对红光折射率小,对紫光折射率大。

(2)在同一种介质中,红光的速度最大,紫光的速度最小。

(3)由同一种介质射向空气时,红光发生全反射的临界角大,紫光发生全反射的临界角小。

8.全反射棱镜-------横截面是等腰直角三角形的棱镜叫全反射棱镜。选择适当的入射点,可以使入射光线经过全反射棱镜的作用在射出后偏转90(右图1)或180(右图2)。要特别注意两种用法中光线在哪个表面发生全反射。

玻璃砖-----所谓玻璃砖一般指横截面为矩形的棱柱。当光线从上表面入射,从下表面射出时,其特点是:⑴射出光线和入射光线平行;⑵各种色光在第一次入射后就发生色散;⑶射出光线的侧移和折射率、入射角、玻璃砖的厚度有关;⑷可利用玻璃砖测定玻璃的折射率。

高三物理知识点14

一、磁场

磁极和磁极之间的相互作用是通过磁场发生的。

电流在周围空间产生磁场,小磁针在该磁场中受到力的作用。磁极和电流之间的相互作用也是通过磁场发生的。

电流和电流之间的相互作用也是通过磁场产生的

磁场是存在于磁体、电流和运动电荷周围空间的一种特殊形态的物质,磁极或电流在自己的周围空间产生磁场,而磁场的基本性质就是对放入其中的磁极或电流有力的作用。

二、磁现象的电本质

1.罗兰实验

正电荷随绝缘橡胶圆盘高速旋转,发现小磁针发生偏转,说明运动的电荷产生了磁场,小磁针受到磁场力的作用而发生偏转。

2.安培分子电流假说

法国学者安培提出,在原子、分子等物质微粒内部,存在一种环形电流-分子电流,分子电流使每个物质微粒都成为微小的磁体,它的两侧相当于两个磁极。安培是最早揭示磁现象的电本质的。

一根未被磁化的铁棒,各分子电流的取向是杂乱无章的,它们的磁场互相抵消,对外不显磁性;当铁棒被磁化后各分子电流的取向大致相同,两端对外显示较强的磁性,形成磁极;注意,当磁体受到高温或猛烈敲击会失去磁性。

3.磁现象的电本质

运动的电荷(电流)产生磁场,磁场对运动电荷(电流)有磁场力的作用,所有的磁现象都可以归结为运动电荷(电流)通过磁场而发生相互作用。

三、磁场的方向

规定:在磁场中任意一点小磁针北极受力的方向亦即小磁针静止时北极所指的方向就是那一点的磁场方向。

高三物理知识点15

1.力是物体对物体的作用,是物体发生形变和改变物体的运动状态(即产生加速度)的原因。力是矢量。

2.重力

(1)重力是由于地球对物体的吸引而产生的。

[注意]重力是由于地球的吸引而产生,但不能说重力就是地球的吸引力,重力是万有引力的一个分力。

但在地球表面附近,可以认为重力近似等于万有引力

(2)重力的大小:地球表面G=mg,离地面高h处G/=mg/,其中g/=[R/(R+h)]2g

(3)重力的方向:竖直向下(不一定指向地心)。

(4)重心:物体的各部分所受重力合力的作用点,物体的重心不一定在物体上。

3.弹力

(1)产生原因:由于发生弹性形变的物体有恢复形变的趋势而产生的。

(2)产生条件:①直接接触;②有弹性形变。

(3)弹力的方向:与物体形变的方向相反,弹力的受力物体是引起形变的物体,施力物体是发生形变的物体。在点面接触的情况下,垂直于面;

在两个曲面接触(相当于点接触)的情况下,垂直于过接触点的公切面。

①绳的拉力方向总是沿着绳且指向绳收缩的方向,且一根轻绳上的张力大小处处相等。

②轻杆既可产生压力,又可产生拉力,且方向不一定沿杆。

(4)弹力的大小:一般情况下应根据物体的运动状态,利用平衡条件或牛顿定律来求解。弹簧弹力可由胡克定律来求解。

4.摩擦力

(1)产生的条件:①相互接触的物体间存在压力;③接触面不光滑;③接触的物体之间有相对运动(滑动摩擦力)或相对运动的趋势(静摩擦力),这三点缺一不可。

(2)摩擦力的方向:沿接触面切线方向,与物体相对运动或相对运动趋势的方向相反,与物体运动的方向可以相同也可以相反。

(3)判断静摩擦力方向的方法:

①假设法:首先假设两物体接触面光滑,这时若两物体不发生相对运动,则说明它们原来没有相对运动趋势,也没有静摩擦力;若两物体发生相对运动,则说明它们原来有相对运动趋势,并且原来相对运动趋势的方向跟假设接触面光滑时相对运动的方向相同。然后根据静摩擦力的方向跟物体相对运动趋势的方向相反确定静摩擦力方向。

②平衡法:根据二力平衡条件可以判断静摩擦力的方向。

(4)大小:先判明是何种摩擦力,然后再根据各自的规律去分析求解。

①滑动摩擦力大小:利用公式f=μFN进行计算,其中FN是物体的正压力,不一定等于物体的重力,甚至可能和重力无关。或者根据物体的运动状态,利用平衡条件或牛顿定律来求解。

②静摩擦力大小:静摩擦力大小可在0与fmax之间变化,一般应根据物体的运动状态由平衡条件或牛顿定律来求解。

5.物体的受力分析

(1)确定所研究的物体,分析周围物体对它产生的作用,不要分析该物体施于其他物体上的力,也不要把作用在其他物体上的力错误地认为通过“力的传递”作用在研究对象上。

(2)按“性质力”的顺序分析。即按重力、弹力、摩擦力、其他力顺序分析,不要把“效果力”与“性质力”混淆重复分析。

(3)如果有一个力的方向难以确定,可用假设法分析。先假设此力不存在,想像所研究的物体会发生怎样的运动,然后审查这个力应在什么方向,对象才能满足给定的运动状态。

6.力的合成与分解

(1)合力与分力:如果一个力作用在物体上,它产生的效果跟几个力共同作用产生的效果相同,这个力就叫做那几个力的合力,而那几个力就叫做这个力的分力。(2)力合成与分解的根本方法:平行四边形定则。

(3)力的合成:求几个已知力的合力,叫做力的合成。

共点的两个力(F1和F2)合力大小F的取值范围为:|F1-F2|≤F≤F1+F2。

(4)力的分解:求一个已知力的分力,叫做力的分解(力的分解与力的合成互为逆运算)。

在实际问题中,通常将已知力按力产生的实际作用效果分解;为方便某些问题的研究,在很多问题中都采用正交分解法。

7.共点力的平衡

(1)共点力:作用在物体的同一点,或作用线相交于一点的几个力。

(2)平衡状态:物体保持匀速直线运动或静止叫平衡状态,是加速度等于零的状态。

(3)★共点力作用下的物体的平衡条件:物体所受的合外力为零,即∑F=0,若采用正交分解法求解平衡问题,则平衡条件应为:∑Fx=0,∑Fy=0。

(4)解决平衡问题的常用方法:隔离法、整体法、图解法、三角形相似法、正交分解法等等。